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A numerical method for calculation of the electronic structure of transition metal impurities in semiconduc-
tors based on the Green function technique is developed. The electronic structure of 3d impurity is calculated
within the LDA+U �local density approximation with interaction� version of density functional method,
whereas the host electron Green function is calculated by using the linearized augmented plane wave expan-
sion. The method is applied to the Cu impurity in GaP. The results of calculations are compared to those
obtained within the supercell local density approximation procedure. It is shown that in the Green function
approach Cu impurity has an unfilled 3d shell. This result paves a way to explanation of the magnetic order in
dilute Ga1−xCuxP alloys.
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I. INTRODUCTION

The experimental and theoretical studies of dilute mag-
netic semiconductors �see, e.g., recent review1� have revived
the interest to details of reconstruction of the electronic
structure of host materials induced by transition metal ions
and concomitant defects. This interest stems from the fact
that the simple Vonsovskii-Zener model of s−d exchange is
apparently not sufficient for an exhaustive explanation of the
behavior of the most popular system �Ga,Mn�As,2 not
to mention the wide-gap materials such as �Ga,Mn�N,
�Zn,Co�O, �Ti,Co�O2.3–5 Not only the localized spins of
magnetic ions but also the acceptor or donor-like states in the
energy gap related to these ions are involved in the indirect
exchange between the magnetic ions responsible for the
long-range magnetic order. The nature of these states is the
matter of a vivid discussion in the current literature.

In particular, an isolated Mn impurity in GaAs creates a
0.11 eV acceptor level relative to the top of valence band.
Besides, the electrons in the half-filled 3d shell form reso-
nance levels in the middle of this band because of an anoma-
lous stability of the half-filled 3d5 shell.6,7 Since the substi-
tution impurity Mn2+�3d5� is negatively charged relative to
the host semiconductor, localizing a hole makes this defect
neutral, and the binding energy of this hole is provided by
the combined action of the Coulomb potential, central cell
substitution potential, hybridization, and maybe, s−d
exchange.8,9 At a high enough Mn concentration these accep-
tor levels form an impurity band and eventually merge with
the hole states near the top of the valence band �see Ref. 10
for a detailed discussion of the current experimental situa-
tion�.

According to the available calculations of the electronic
spectra of an isolated Cu in GaP,11 the copper impurity
should have a similar electronic structure. Due to the special
stability of the filled 3d10 shell all the 3d levels of the Cu
impurity are expected to be occupied in the ground state, and
the electrical neutrality of Cu impurity should be ensured by
capturing two holes on Cu-related acceptor levels close to
the top of the valence band so that the resulting electron

configuration can be denoted as Cu�d10p̄2�. Indeed such ac-
ceptor states were found in GaP:Cu samples,12 although at
that time the nature of these states remained unclear.

Recently, ferromagnetism with a high Curie temperature
in p-type Cu-doped GaP was detected.13 The electron para-
magnetic resonance �EPR� signal of the Cu2+ state indicates
that the 3d shells of Cu impurities are unfilled in this mate-
rial in contradiction to the results of previous numerical cal-
culations. This discrepancy gives us a motivation to revisit
the problem.

We present in this paper the results of numerical calcula-
tions of the electronic structure of Cu-doped GaP. Two dif-
ferent computation schemes are used, which give mutually
complementary information about the behavior of weakly
and strongly doped materials. The first one is the conven-
tional local density approximation �LDA� scheme applied to
the lattice of CuxGa1−xP supercells. Similar methods were
used for MnxGa1−xPn materials with Pn=As,N,P.14,15 The
second method is based on the local Green function
approach.16 In this method the hybridization between the lo-
cal impurity d orbitals and Bloch waves in the host semicon-
ductor is calculated exactly, without any kind of artificial
periodic boundary conditions, and approximations are made
only when taking into account the short-range part of substi-
tution impurity potential.

II. IMPURITY GREEN FUNCTIONS IN LDA+U
APPROXIMATION

A Green function calculation procedure based on the mi-
croscopic Anderson model17 was proposed three decades
ago18,19 and later on summarized in Ref. 7. This procedure
deals with the local Green function

Gimp�r,r�,z� = �
�

�������z − H�−1������ . �1�

The set ��� includes both the electron states �����r� of the
electrons localized in the d-shell of impurity atom and the
states �b,����r�, which stand for “the Bloch tail” of the im-
purity wave function. These states describe the distortion in-
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serted by the substitution impurity in the spectrum of the
host crystal. Their symmetry is specified by the correspond-
ing irreducible representation � of the point group character-
izing the symmetry of impurity and its surrounding. Index �
denotes the rows of this representation, � is the spin quantum
number. The tail of the impurity wave function is the super-
position of Bloch waves, �b,���=�knCkn

���kn�, where k and n
are the wave vector and the band index, respectively. There-
fore the function Gimp is diagonal in the �� representation.

The full Hamiltonian H includes the kinetic and potential
energies of all electrons in the impurity atom and in the host
crystal, as well as the Coulomb and exchange interactions
between these electrons. The impurity makes two different
contributions into the scattering amplitude. The first one is
due to all partial amplitudes, for which the reduced phase
shift �l�	 /2, and which can be taken into account by means
of, say, impurity pseudopotential. The other contribution is
due to the scattering in the l=2 channel, which has a reso-
nance character, which means that �2 is close to 	 /2, due to
the proximity of the impurity d levels to the forbidden en-
ergy gap of semiconductor. The first contribution will be de-
noted as potential scattering, whereas the second one will be
obviously called resonance scattering.

The projection procedure �Eq. �1�� is exact in principle,
and the poles of the Green function Gimp describe both con-
tinuous and localized impurity related states in the doped
crystal. In the practical realization of this method some ap-
proximations are unavoidable. The main simplification,
which we use here is the approximate treatment of the sub-
stitution potential


V�r − R0� = Veff�r − R0� − Vh
0�r − R0� ,

where Vh
0�r−R0� is the potential landscape for an electron in

the host gallium atom in the site R0 and Veff�r−R0� is the
self-consistent potential for the electrons in the 3d shell of
the Cu ion substituting for Ga in this site �see Sec. III for
detailed definition of these potentials�. We suppose that this
potential is localized within the defect cell of the doped crys-
tal. The “local substitution potential” approximation influ-
ences only the description of p-type acceptor states in the
lower part of the forbidden energy band. It ignores possible
contribution of the Coulomb component of substitution im-
purity potential. This contribution is known to be small in the
case of �Ga,Mn�As,10 and one may hope for a similar situa-
tion in �Ga,Cu�P.

The principal advantage of the local substitution potential
is that in this case the system of Dyson equations for the
impurity-related components of the Green function �Eq. �1��
defined as G���z�= �����z−H�−1���� may be solved
analytically.16 It yields the equation

G��
−1 �z� = z − �d� − M��z�/Q�z� , �2�

for the d-electron Green function. The positions �d� of elec-
tron d levels are found self-consistently as solutions of the
Schrödinger equation for Cu-related orbitals in the crystal-
line environment. The self-energy in the right-hand side of
Eq. �2� contains two contributions. The term

M��z� = �
nk

�M�,nk�2

z − �nk
�3�

describes the resonance impurity scattering, which stems
from the hybridization between the d orbitals and the band
electrons characterized by the integral

M�,nk =	 �d��
� �r�
V�r��nk�r�dr . �4�

The energy bands �nk and Bloch functions �nk�r� of the host
GaP crystal are calculated by means of the first-principles
full-potential linearized augmented plane waves �FLAPW�
method20,21 �see Sec. III for details�.

The factor

Q�z� = 1 − 
V0Gh
0�z� . �5�

in Eq. �2� describes the short-range potential scattering,
where


V0 = �
nknk�

	 �nk
� 
V�r − R0��nk�dr �6�

is the substitution impurity potential localized in the defect
shell,

Gh
0�z� = �

nk
�nk��z − H0�−1�nk� = �

nk

1

z − �nk
�7�

is the single-site lattice Green function for the electrons in
the nondoped host crystal described by the Hamiltonian H0.

As was shown in Ref. 16, the Green function �Eq. �2��
describes the hybridization between the impurity d-electron
orbitals and the electrons in the imperfect host crystal, where
the band electrons are influenced by the potential scattering

V. If this scattering is strong enough, it results in splitting
off of localized levels from the top of the valence band. This
effect is also taken into account in Eq. �2�: the positions of
the corresponding levels before the hybridization are deter-
mined by zeros of the function Q�z� in the energy gap of the
host crystal.

One of the fundamental statements of the theory of tran-
sition metal impurities in semiconductors6,7 is the necessity
to discriminate between the impurity levels in the gap ob-
tained as solutions of a self-consistent mean-field
Schrödinger equation for a doped crystal and the true
addition/extraction energy of a d electron to/from the
valence/conduction band. The latter energies are determined
by the energy balance of “Allen reactions”6,7,22

�n/n−1 = E�dn� − E�dn−1� − �v,

�n+1/n = �c − E�dn+1� + E�dn� . �8�

Here E�dp� is the total energy of doped crystal with the im-
purity having p electrons in 3d shell. Two Allen reactions
describe the electron transition from the top of the valence
band �v to the empty neutral �acceptor� level and the electron
transition from an occupied charged �donor� level to the bot-
tom of the conduction band �c, so that the energies �Eq. �8��
characterize the true positions of the impurity levels with
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respect to the band edges in the presence of strong Coulomb
and exchange interactions. These energies do not necessarily
coincide with the mean-field solutions of the Schrödinger
equation due to the violation of Koopmans’ theorem for the
impurity ions.

To minimize the mismatch between the single-electron
and many-electron states we use Slater’s concept of “transi-
tion state,” i.e., approximate the ionization energy for a state
with n electrons in the 3d shell, E�dn�−E�dn−1� by the energy
��n−1 /2� calculated within the LDA+U calculation
scheme.23,24 In terms of the Allen energies �Eq. �8��, the en-
ergy U is just the difference between �n+1/n and �n/n−1. We
test below both the LDA+U method of Green function cal-
culations and the standard LDA supercell description of di-
lute �Ga,Cu�P semiconductor.

The LDA+U method incorporates a correction to the
LDA energy functional, which provides an improved de-
scription of the electron correlations. The principal idea of
the LDA+U method is to separate the electron system into
two subsystems of the localized d electrons for which the
Coulomb interaction is accounted for by the Hubbard repul-
sion term 1

2U�m�m�mm� in the model Hamiltonian and the
delocalized s , p electrons, which are described by an orbital-
independent one-electron potential VLDA�r�.

The Green function �Eq. �2�� is calculated in the spheri-
cally symmetric local basis �i
 plm�. Here p is the index of
repeating irreducible representations lm, the analog of the
principle quantum number n in a spherical atom.

The bare d-electron Green function

Gi,�
�0��z� =

1

z − �i − 
Vii,�
LDA+U �9�

includes intra-atomic correlations in the form of LDA+U
potential consisting of three terms:25

Vii,�
LDA+U = 
Vii,�

LDA + 
Vii,�
U + 
Vii,�

dc . �10�

Here the first term is the substitution LDA potential,


Vplm,plm;�
LDA = �

l�

Glm,L�0
lm 	

0

remb

drr2
Vl�0,�
LDA�r�Rpl�

2 �r� ,

�11�

the second term is the electron-electron interaction potential
in the 3d shell,


Vplm,plm;�
U = �

m�

��Ummm�m� − Umm�m�m�plm�,−�

+ Ummm�m�plm�,�� , �12�

and the last term is the double counting compensation poten-
tial, parameterized as


Vplm,plm;�
dc = − U��

m�

nplm,� −
1

2� + J��
m

nplm,� −
1

2� .

�13�

Here we introduced the occupational matrix

plm,� = −
1

	
Im	

�b

�F

�G�z��plm,�
�0� dz

as a contour integral of the relevant matrix elements of the
LDA+U Green function �Eq. �9��. The Slater integrals26

Um1m2m3m4

�m1 ,m3�Vee�m2 ,m4� can be expressed in terms of

the Gaunt coefficients Glm,l�m�
l�m+m� �Eq. �A10��. In what follows

only spin-independent states will be considered so we omit
the spin index from now on.

The hybridization matrix elements �Eq. �4�� in the nu-
merator of the mass operator now take the form

Mi,nk = 	
�emb

�i
��r�
V�r��nk

LAPW�r − �s���r − �s�dr .

�14�

Here the Bloch wave functions �nk
LAPW are calculated by

means of the linearized augmented plane wave �LAPW�
method, �s is the vector connecting substitution impurity site
taken as the point of origin with its nearest P neighbors in the
zinc-blende lattice.

In the impurity version of FLAPW method the defect site
occupied by a Cu ion is surrounded by the “embedded
sphere” with the radius remb, which includes the impurity
sphere with the radius rD �muffin-tin region, where the im-
purity potential is nonzero�. Muffin-tin spheres rs= �remb
−rD� /2 with a nonzero host lattice potential surround also
the neighboring Ga sites �see Fig. 1�. The impurity-centered
basis set is chosen as a set of the linearized augmented
spherical wave �LASW� functions �Eq. �A3��. In accordance
with the LASW method, a set of Bessel functions is used in
the remaining part of the remb sphere. The wave functions in
the two regions are matched by the standard boundary con-
ditions imposed on the wave function and its derivative. The
Bloch functions �nk

LAPW�r� of the host GaP crystal outside the
embedded sphere are obtained by the self-consistent FLAPW
method. Using the impurity-centered local LASW functions
we calculate the matrix elements of the host Green function
projected onto the local spin polarized LAPW functions in

sr

Dr

r
sτ

X

0

Z

Y

emb

FIG. 1. �Color online� The embedded sphere and coordinate
system used in our calculations.
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the spherical interstitial site. After matching the boundary
conditions �see Appendix A�, the matrix element �Eq. �14�� is
transformed into

Mi,nk =
4	�s

2

�0
�
�

vn�k�� �
L�M�

�
lm

ilYlm
� �k̂��Glm−M�,L�M�

lm

�	
0

remb

drr2Rpl�r�
VL�M��r��l
s,LAPW�k�,r� �15�

�� stands for the vectors of reciprocal lattice, see Appendix
A�. As was mentioned above, substituting Ga for a Cu im-
purity results also in an appearance of a nonresonant compo-
nent of the impurity potential, which is taken into account by
adopting the Koster-Slater-like single site scattering
approximation.16 Then in accordance with Eq. �2�, one may

introduce the modified mass operator M̃i
��z�=Mi

� /Q�z�,
where the zeros of operator Q�z� �Eq. �5�� determine the
impurity states, which arise in the doped crystal due to the
potential scattering only. The scattering amplitude 
V0 is
calculated by substituting the LAPW wave functions
�n�k�

LAPW�r� for the Bloch functions in Eq. �6�.
As a result the equation for the deep level energy deter-

mined as a pole of the impurity Green function �Eq. �2��
within the framework of the LDA+U technique reads

z − �i − 
Vii
LDA+U = M̃i�z� . �16�

It takes into account the resonance part of the scattering am-
plitude in the d �l=2� channel and its mixing with the poten-
tial scattering states arising in the p �l=1� channel.16

The adspace augmentation27 is used to represent the
Green function �or resolvent� G�z� for the GaP crystal with a
Cu impurity in the matrix form �Eq. �A1��. The impurity-
augmented Green function is subdivided into two blocks, of
which the upper left corner block GA

0�z� is constructed using
the basis of i orbitals, where i refers to the state with the
energy �i of the isolated impurity ion. The host is represented
by the lower right corner block Gh

0�z�.
It is worth emphasizing that such a direct introduction of

the impurity ion related states is very effective in the matrix
formulation. Since the high-energy part of the spectrum of
differential operator is well suited for the description of the
strongly localized d-type impurity states,28 the issue of the
necessary number of the host crystal bands becomes cru-
cially important. The direct introduction of the d states dras-
tically simplifies the problem. The Dyson equation may be
then split into two independently solvable equations �see Ap-
pendix A�, which finally allows one to carry out the calcula-
tions of the GaP host Green Gh

0�z� using only 15 bands.
The problem is treated self-consistently, starting with the

trial set of LAPW functions obtained with the help of the
impurity potential, which in the zero’s approximation is just
a sum of the atomic potentials of the defect crystal. The
self-consistency procedure for 
V�r� is carried out in a
mixed fashion. The first two iterations use the arithmetic
average scheme, which later on is effectively substituted by
the Aitken scheme.29 Just seven iterations produce the
�2·10−4 Ry self-consistency.

The equations presented in this section will be our work-
ing formulas for the LDA+U calculations of the Ga�Cu�P
compound, where the Cu atoms substituting Ga host atoms
will be considered as isolated impurities. A possible ex-
change interaction between the Cu atoms and the resulting
magnetic effects will be considered elsewhere.

III. DISCUSSION OF THE RESULTS

This section presents results of calculation of the elec-
tronic structure of CuxGa1−xP obtained by means of the two
methods, both using the LDA approximation. The Green
function approach is based on the band structure calculated
by means of the FLAPW method discussed in the previous
section. The supercell approach uses the ASA-LMTO
method �atomic-sphere approximation to the linearized
muffin-tin orbital method�30 for the band calculations. The
Vosko31 and Perdew-Wang32 parametrization scheme is used
for the calculation of the exchange-correlation potential in
the former and latter approaches, respectively. Brillouin zone
�BZ� integration is performed using the improved tetrahe-
dron method.33

According to the present FLAPW and LMTO calcula-
tions, the undoped GaP is a semiconductor with the 1.83-eV
LAPW indirect gap and 1.61-eV ASA-LMTO gap between
the top of the valence band �VB� at the � point and the
bottom of the conduction band �CB� at the �0,0,0.875� point
close to the X point of the fcc BZ. A direct gap of 1.77 eV
opens at the � point. The 6.8-eV-width valence band is
formed by the strongly hybridized P p and Ga s and p states
while the states at the top of VB in the vicinity of � are
formed by the P and Ga p states with a dominant contribu-
tion of the former. The band originating from the P related s
states hybridized with the Ga-related s states is found be-
tween −12.5 and −9.5 eV and separated by a gap of 2.8 eV
from the bottom of the valence band. The density of states
�DOS� of GaP is visualized in Fig. 2 as the imaginary part of
the Green function Gh

0 �Eq. �7�� calculated by the FLAPW
method.

−14 −12 −10 −8 −6 −4 −2 0
−40

−20

0

20

40
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80

E (eV)

G
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E
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Im(Go(E))

−Re(Go(E))

FIG. 2. �Color online�The functions Re�Gh
0� and Im�Gh

0� for
GaP.
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A similar picture is obtained by direct-band structure cal-
culations within the ASA-LMTO method. The difference in
the widths of the energy gaps only weakly influences the
structure of the Cu-related states in the energy spectrum of
doped samples. We start the discussion of these states with a
discussion of the supercell calculations.

A. Supercell energy spectrum of Cu1−xGaxP

The electronic structure of CuxGa1−xP with x varying from
0.125 down to �0.016 was calculated using 2a�2a�2a,
3a�3a�3a, and 4a�4a�4a supercells of the cubic zinc-
blende lattice. Calculations for x=0.125 �1/8�, 0.063 �1/16�,
and 0.031 �1/32� were performed for F4̄3m �216� fcc, I4̄3m

bcc �217�, and P4̄3m �215� simple cubic unit cells, respec-
tively. The face-centered cubic cells with a=3a0 and a
=4a0 allowed us to simulate the compositions with x
�0.037 �1/27� and x�0.016 �1/64�. In all the calculations
the Ga ion in the �0,0,0� position was substituted by the Cu
ion with the same atomic sphere radius. This way the tetra-
hedral �Td� symmetry of the Cu impurity site was preserved.
The positions of host atoms around the Cu impurity were not
relaxed.

Upon the Cu substitution CuxGa1−xP becomes a metal
with each Cu impurity creating two holes in the valence
band. At all the compositions x studied in the present work
the Fermi level ��F� crosses the three bands which are triply
degenerate at the highest energy in the � point. At x=0.063
the top of the valence band lies 0.42 eV above �F and moves
to 0.13 eV as the Cu concentration decreases to x=0.016. As
an example, bands calculated along some high symmetry di-
rections for CuxGa1−xP with x=0.031 are shown in Fig. 3. At
this Cu concentration the top of the valence band is situated
0.22 eV above �F.

Figure 4 �lower panel� shows the density of Cu d states in
CuxGa1−xP with x=0.031 projected onto the irreducible rep-
resentations e and t2 of the Td symmetry group. The densities
of p states of the nearest �P1 and Ga1� and next nearest �P2
and Ga2� neighbors of the Cu impurity are presented in the
middle and upper panels of Fig. 4.

The calculations show that the Cu d shell is almost com-
pletely filled and the Cu valency is close to 1+. The Cu d
states of e symmetry �3z2−1 and x2−y2� form a density of
states �DOS� peak centered at −2.5 eV. They are completely
occupied and do not contribute to the bands crossing the

Fermi level. The main peak of the density of the t2 �xy, yz,
and zx� states is located at −3 eV. However, another two
peaks of t2 DOS are clearly seen just at �F and 0.5 eV below
it. The origin of these peaks becomes more clear when the
Cu t2 DOS is compared to the density of p states of the P1
ion closest to Cu. The latter shows two prominent peaks
exactly at the same energies. Similar peaks can also be ob-
served in Ga1 DOS, as well as in DOS of the more distant P
and Ga ions not shown in Fig. 4. The analysis of the partial
occupations shows that of the two holes �h� created by the
Cu impurity only 0.18 h is provided by the Cu t2 states.
Another 0.48 h is distributed over the p states of 4 P1 ions
whereas the remaining 1.36 h is spread over more distant
neighbors.

It is worth noting that in spite of the appearance of the
narrow DOS peak exactly at �F, the spin-polarized calcula-
tions failed to produce a ferromagnetic solution even for the
highest Cu concentrations studied. Apparently, this can be
explained by the delocalized character of the states respon-
sible for the peak and an insufficient strength of the Hund’s
exchange coupling for P and Ga p states, which give the
dominant contribution to the corresponding bands. At the
same time, the contribution of Cu d states, for which a strong
on-site exchange interaction is expected to the peak at �F, is
relatively small.

We also performed test calculations for a few values of x
in ExGa1−xP, in which a Ga ion was substituted by a vacancy
E. A vacancy creates one more hole in the valence band as
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FIG. 3. �Color online� Bands calculated along some high-
symmetry directions and the total DOS for CuxGa1−xP with x
=0.031.
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FIG. 4. �Color online� A symmetry-resolved density of Cu d
states �lower panel� and the density of P p �middle panel� and Ga p
�upper panel� states calculated for CuxGa1−xP with x=0.031.
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compared to Cu. Nevertheless, in the vicinity of the Fermi
level the band structures calculated for ExGa1−xP are similar
to those for Cu-doped GaP. In particular, the density of P1
states at and just below �F has the same two-peak shape.
These peaks are also reflected in the density of E d states of
the t2 symmetry, however, they are much less pronounced
than the corresponding peaks of Cu t2 DOS. Significantly
higher peaks can be observed in the density of E p states,
which also transform according to the t2 representation.

Thus, we may conclude that the bands crossing �F in
CuxGa1−xP are mainly formed by the p states of the nearest
to the Cu impurity P1 ions that split off from the top of the
GaP valence band as a result of breaking of the covalent P
p–Ga bonds at the impurity site. These states have t2 sym-
metry and hybridize strongly with the corresponding Cu d
states. These states are, however, rather extended, which
leads to a relatively strong dispersion of the split-off bands
even for x=0.016.

B. Cu-related energy states of isolated impurity

Before turning to the calculation of the Cu-impurity re-
lated levels in the host GaP, let us look at the energy depen-
dence of the self-energy part �Eq. �3��, which is responsible
for the renormalization of 3d levels due to the hybridization
with the host band states. The hybridization matrix elements
Mi,nk are calculated by means of Eq. �14� using the Cu 3d
impurity wave functions and LAPW functions of the GaP
host. Since the LAPW wave functions are defined within the
volume subdivided into two muffin-tin parts and the sur-
rounding volume, the integration in Eq. �14� is carried out in
all three parts separately accounting for all the hybridization
contributions, as well as for the covalency induced non-
spherical components of the difference potential.

Figure 5 represents the real and imaginary parts of Mi���
obtained for the �Ga,Cu�P compound. Here index i represents
one of the components of the t2 irreducible representation.
Comparison of Im Mt2

��� with the density of band states,
which is shown as Im�Gh

0� in Fig. 2, demonstrates that the

weighting of the density of states with the squared hybrid-
ization matrix element reproduces the general shape and van
Hove singularities of the partial p component of DOS. The
differences between Re�Gh

0� and Re Mt2
��� are more notice-

able. Both these functions are sums of the Hilbert transforms
of the DOS and weighted DOS for all the valence and con-
duction bands, respectively. Therefore these functions not
only map the singularities of DOS in the given band on the
singularities of its Hilbert transform but also accumulate
asymptotic contributions of higher and lower bands at the
given �. This accumulation results in a noticeable smoothing
of the Mt2

��� function in the −6 to 0 eV range. Besides,
weighting with Mt2

2 ��� strongly reduces the amplitude of
Re Mt2

��� in comparison to Re�Gh
0�. Such strong reduction

means that the hybridization-induced renormalization of the
atomic 3d levels of the isolated Cu impurity is small enough,
and their positions are predetermined mainly by the impurity
core potential and Coulomb interaction within the muffin-tin
sphere rD.

To compare the energy spectrum of the Cu impurity in
GaP obtained by the Green function method with that given
by LDA in the supercell calculation scheme, we first com-
pute this spectrum by solving Eq. �16� within the LDA
scheme without the second term 
Vii

U in the impurity poten-
tial �Eq. �10��. Both the resonant and short range potential
components of impurity scattering were taken into account.
These calculations yield the value �v−0.66 eV for the impu-
rity dt2

resonance in the valence band, which is higher than
that in the supercell calculation, and the de peak lies slightly
above this level. Apparently, these peaks are related to the
van Hove singularities in the heavy hole band. These reso-
nances are shallower than those seen in the supercell DOS
�Fig. 4�. As was mentioned above, the de peak in the latter
structure is located at �v−2.5 eV. However, one should re-
member that the center of gravity of the valence band DOS is
shifted downward with respect to its position in the pure GaP
due to the transformation of de and dt2

levels into d bands
�see Fig. 3�. Potential scattering built in the self-energy part

M̃i�z� in Eq. �16� results in the appearance of an empty im-
purity level at �v+0.168 eV. This acceptor level may be
identified with the x→0 limit for the P-related p structure at
the top of the valence band in the supercell DOS �Fig. 4,
middle panel�. The occupation of the impurity d shell in this
case is close to ten like in the supercell calculations.

The computation of the impurity spectrum within the
LDA+U scheme yields a self-consistent solution for the
electron spectrum only for the transition state 3d8.5 of Cu
impurity. This solution is described below. First, we deter-
mined the position of nonperturbed 3d level of the Cu atom
and the correlation parameters U−J. The isolated impurity
energy �i�+8.5�=−20.9 eV is calculated by means of the
semirelativistic RATOM program34 for the 3d8.5 configuration,
which corresponds to the concept of the transition state
adopted in this paper. The intra-atomic Coulomb repulsion of
the d electrons is treated in the LDA+U approximation and
m-dependent Coulomb integrals Um1m2m3m4

are calculated.
The choice of the parameters U=4.5 eV and J=0.7 eV is
based on the analysis of the occupation numbers in the tran-
sition state approach.35,36 The self-consistent single electron
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FIG. 5. �Color online� Real and imaginary parts of mass opera-
tor Mia

��� for �Ga,Cu�P.
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3d level for the embedded Cu impurity in the 3d8.5 configu-
ration is in resonance with the valence band of GaP host
crystal, and the impurity-related resonance and discrete states
are found as solutions of Eq. �16�. Figure 6 depicts the elec-
tronic structure of �Ga,Cu�P calculated by the Green function
method. We present here three versions of the calculations
which account for: �a� resonant scattering, �b� short-range
potential scattering, and �c� combined case.

In the resonant scattering approximation �Fig. 6�a��,
where the term Q−1�z� is omitted in Eq. �16�, there are four
occupied levels in the valence band and one empty level in
the energy gap. The occupied states correspond to the con-
figuration Cu�d8� of the impurity ion. These levels reflect the
multiplet structure of this configuration. Although we used
the orbital quantum numbers in our computation procedure,
the calculated electron density distribution reveals the Td
point symmetry of the impurity surrounding. In terms of the
corresponding cubic harmonics the lowest state has the t2
symmetry, the two next levels belong to the e representation,
and the empty state in the energy gap is the t2 state of the
configuration d9. In terms of the Allen diagrams �Eq. �8��
these levels correspond to the addition energy �t2

9/8=E�e4t2
5�

−E�e4t2
4� and �e

9/8=E�e4t2
5�−E�e3t2

5� for dt2
and de quantum

numbers, respectively, �see similar classification for
�Ga,Ni�P in Ref. 11�. The final 3d8 states belong to the
3T2�F� and 3T1�F� representations in the Tanabe-Sugano
classification.6,7,16,11

The energy interval between the multiplet of occupied
levels in the valence band and the empty level in the energy
gap is �4 eV, which is comparable to the value of the input
parameter U−J=3.8 eV. The hybridization renormalization
due to the self energy M�z� in Eq. �16� is 0.115 eV for the
occupied levels and 0.182 eV for the empty level. In the
calculation procedure described above, the difference in hy-
bridization shifts for t2 and e levels was neglected because
the hybridization �ligand field� contribution is small enough
for the Cu impurity ion.

Figure 6�b� exhibits the net contribution of potential scat-
tering �Eq. �11�� to the formation of impurity-related states.
The levels shown in this figure are obtained from Eq. �16�

with M̃ substituted for Q−1 �see Eq. �2��. The states in the
occupied part of the spectrum are the impurity resonances in
the valence bands around the maxima of the partial p-wave
contributions at the energies �−6 eV and �−2 eV �cf. Figs.
4 and 5�. The p level arises at the energy +0.68 eV above the
top of the valence band.

Both the d- and p-like states are found in the solution of
Eq. �16� with the full self-energy M̃ �Fig. 5�c��. The most
significant difference between the combined spectrum of Fig.
5�c� and those of Figs. 5�a� and 5�b� is the noticeable hybrid-
ization between p and dt2

resonances in the valence band,
whereas thee de levels are only slightly shifted. The shallow
p level in the energy gap is pinned to its original position
shown in Fig. 5�b�, in spite of dp hybridization. All these
results agree with the qualitative predictions of the analytical
model taking into account both resonant and short-range po-
tential stattering.16

There is no straightforward way to compare the results of
LDA+U calculations with those obtained within the LDA
scheme, since the former method uses the fitting parameters
U ,J, whereas the latter one is based on the variational ap-
proach, which formally gives the solution corresponding to
the minimal total energy. We only may estimate the total
energies of the two solutions by comparing the positions of
the impurity levels obtained by both methods within the
same Green function approach. LDA procedure gives the oc-
cupied e and t2 levels at the energies ��v−0.64 to 0.66 eV
below the top of the valence band and the shallow p level at
the energy �v+0.168 eV, which corresponds to the configu-
ration d10p̄2: two holes neutralize the excess charge in the d
shell, which means that the triply degenerate p level is occu-
pied by one electron. In the LDA+U solution the occupied t2
and e levels lie essentially deeper in the valence band at the
energies ��v−2.3 to 1.8 eV, Cu ion behaves as the isoelec-
tronic impurity Cu3+�d8�, and the acceptor p levels are triply
occupied in the neutral impurity state. The comparison of
single-electron energies for the two solutions gives the en-
ergy gain �10.7 eV for the latter state. It is hardly probable
that the exchange-correlation contribution may change the
energy balance in favor of a state with the fully occupied 3d
shell of the Cu impurity.

Comparing the electronic structures of �Ga,Cu�P obtained
by the supercell and Green function methods, one may indi-
cate both similarities and dissimilarities in the description of
impurity-related states. First, both methods provide the same
mechanism for formation of the shallow p levels in the en-
ergy gap of the host material, which merge into the impurity
band at a high enough dopant concentration. These levels are
split off from the top of the valence band and partially hy-
bridized with the t2 levels in the valence band.

Second, the spectral density of the impurity-related d�

states is concentrated mainly in the valence band with the dt2
component lying below the de component. Here, however,
the important difference between the two approaches should
be emphasized. As was mentioned above, the d� resonances
calculated within the Green function LDA approximation are
shallower than those found by means of the supercell ap-
proach. One may see also a difference in the de−dt2

splitting:
it can be estimated as �0.5 eV in the supercell calculations
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FIG. 6. Electronic structure of �Ga,Cu�P, calculated from Eq.
�16�. The lowest of the five levels in the left panel correspond to the
states �2, �1�, the next �l ,m� levels are classified as �2,−2�,�2,0�
and �2, +2� �bottom-up�. See the text for further discussion
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and as �0.3 eV in the Green function calculations. The
main reason of this difference is the fact that the impurity 3d
levels are transformed in effective d bands in the periodic
supercell structure, and the hybridization repulsion between
the two Bloch waves is stronger than that between the local-
ized d levels and periodic partial p waves in the Green func-
tion approach. The same argument is valid for the quasiband
method used in the calculations of Ref. 11, where the Cu-
related d levels are located even deeper than in our supercell
calculations at the energies �3−4.5 eV below the top of the
valence band of GaP.

The most important difference between the results de-
scribed in Secs. III A and III B is of course the difference in
the electron configuration of Cu impurity, which is d10p̄2 in
the supercell calculations and d8 in the Green function cal-
culations. Available experimental data13 are in favor of the
configuration d9p̄. At this stage we have no exhaustive ex-
planation of these discrepancies. First, our scheme should be
extended to the spin-unrestricted LDA solution and to the
multi-impurity case. We expect that the charge configuration
of Cu ions is highly sensitive both to the spin state and to the
interimpurity coupling. Second, more experimental investi-
gations are necessary, which would reveal the role of con-
comitant defects, the annealing conditions, the thickness of
the film, and other technological factors. It is also worth-
while checking whether the use of LDA+U method in the
supercell approach may result in the configuration with an
incomplete 3d shell of the Cu impurity. We leave all these
questions for further investigations.

IV. CONCLUDING REMARKS

The numerical solution of the Dyson Eq. �16� derived by
means of the Green function method reveals similarities and
dissimilarities between the electronic structures of the Mn
impurity �half-filled 3d shell in atomic state� and Cu impu-
rity �completely filled 3d shell in atomic state� substituting
for Ga in zinc-blende semiconductor. Our calculations show
that unlike Mn, which retains its stable half-filled 3d5 shell in
the host GaAs and GaP crystals,1,10 the Cu impurity may
release some of its d electrons from the stable filled shell
3d10 to minimize the total energy of doped crystal, at least in
the wide-gap GaP. Our theoretical result partially agrees with
the experimental observation of Cu ions with unfilled 3d
shell in GaP.13 It paves a way to theoretical explanation of
the ferromagnetic ordering in Ga1−xCuxP crystals, although
for this purpose further development of the Green function
method is necessary. The results of the numerical study of
magnetic ordering by means of the Green function method
will be published elsewhere.
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APPENDIX A: DETAILS OF COMPUTATIONAL SCHEME

In order to realize the Green function approach in a com-
putational scheme we make use of the local density approach

�LDA� �Ref. 37� and its LDA+U modification,38 which ac-
counts for a strong electron-electron interaction. The
approximation31 is used for the exchange-correlation poten-
tial. The band structure of the GaP semiconductor is calcu-
lated by means of the ab-initio full-potential all-electron
FLAPW method.21 This method presents the charge density
and the crystal potential as a series of the spherical harmon-
ics inside the muffin-tin spheres and of the plane waves out-
side the spheres. The self-consistent electronic band structure
is determined by solving a single particle Dirac equation by
using the variational method in LAPW function basis
��nk

LAPW�r��. In order to evaluate the Coulomb part of the
crystal potential we use the concept of multipole potentials
and solve the Dirichlet problem for the sphere with all the
contributions being treated on equal footing.21 The
exchange-correlation potential is approximated by the Padé
approximant technique in order to interpolate accurately the
recent Monte Carlo results with the random phase approxi-
mation spin-dependent data.31 The Fourier components of
the exchange-correlation potential in the interstitial region
are fitted in the least square method by applying the singular
value decomposition procedure. The charge density in the
interstitial region is calculated in ca. 2000 to 3000 random
points in the irreducible wedge of the Wigner-Seitz cell.

In order to find the self-energy Mi�z�, one has to calculate
the matrix elements Mnk,i between the band states �nk� and
the states �i�
�plm� of the impurity atom. A computational
scheme based on the augmented Green functions39

G0�z� = �GA
0�z� 0

0 Gh
0�z�

� �A1�

is developed for this sake. Here

GA
0�r,r�;z� = �

i=p,l,m

�i�r��i
��r�

z − �i

is the impurity Green function, whereas the host crystal is
represented by

Gh
0�r,r�;z� = �

n=1

P

�
k�IBZ

�nk
LAPW�r��nk

LAPW�

�r��
z − �nk

.

The wave functions of electrons localized in the impurity
3d shell are defined within the impurity sphere r�rD �see
Fig. 1�: �plm�r�=Rpl�r�Ylm�r̂�. The radial parts of these func-
tions are defined as solutions of the equation

�− �2 + Vh
0�r� + 
V�r��Rpl�r� = �plRpl�r� , �A2�

and the angular parts are represented by the spherical har-
monics. The Bloch wave functions are expanded in the re-
ciprocal wave vectors k�=k+K�

�nk
LAPW�r� = �

�

vn�k���k�
�r� ,

where
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�k�
�r� =

1
�0

�eik�r�int�r� + �
s

�s���eik��s4	rs
2�

lm

il�lm
�s�

��k�,��Ylm
� �k̂���

with

�lm
�s��k�,�� = �al

�s��k��Rl
�s���l,� + bl

�s��k��Ṙl
�s���l,��Ylm��̂� .

The following notations has been used above:

�int�r� = �1, r � �int − volume of the

interstitial region

0, otherwise,
�

�s��� = �s�r − �s� = �1,  � �s − volume of the

s sphere region

0, otherwise,
�

vn�k�� are eigenvectors of FLAPW variation procedure; n is
the number of the accounted energy bands, �0 is the volume
of the Wigner-Seitz cell, al

�s��k�� and bl
�s��k�� are the muffin-

tin coefficients in the FLAPW method, and Ṙl
�s���l ,�

= �
��Rl

�s��� ,� ��l
for the fixed energy �l. Rl

�s���l ,� is the ra-
dial part of the LAPW function.

1. Choice of the localized basis

Calculations of the electronic structure of defects in crys-
tals are usually based on the pseudopotential or LCAO �lin-
ear combinations of atomic orbitals� + pseudopotential
approach.40,41 This method requires a large number of the
Gaussian orbitals and calculation of their overlap integrals.
Instead we perform here an all-electron calculation which
allows one to realize the spin-polarization LDA+U scheme.
This approach uses the basic set of ND functions

���r� 
 �pLM�r,�,�� = �FpL�r�YLM�r̂� , for r � rD,

jL��pLr�YLM�r̂� for r � rD
� .

�A3�

Here L is a non-negative quantum number and −L�M �L,
the inverse length �pL is defined by zeros of the Bessel func-
tion jL��Lp

remb�=0 for the radius remb of the embedded
sphere; p is the integer number enumerating these zeros. The
radial parts of the wave functions �Eq. �A3�� are matched to
the Bessel functions by means of usual boundary conditions
at r=rD.

The above basis ���r� was used in the Cholesky decom-
position S=L ·L† for the overlap matrix

S�� = 	
�emb

��
� �r����r�dr

in order to obtain the orthonormal basis

�̃��r� = �
��

�L−1����
†

����r� .

Then the Green function of the host crystal is projected onto
the localized basis

Gh,��
0 �z� = �

n=1

M

�
k�IBZ

��̃�����nk
LAPW���nk

LAPW����̃��
z − �nk

and calculated by means of the analytical tetrahedron
method33 within the irreducible part of the Brillouin zone.

2. Self-energies for impurity Green function

The impurity Green function �Eq. �2�� contains several
self-energy corrections to the atomic levels �i. Two of them
given by Eqs. �12� and �13� arising from the Coulomb inter-
action are responsible for the multiplet structure of the en-
ergy levels. Potential contribution �Eq. �11�� results in the
crystal field splitting of these levels, and the resonance self-
energy is the analog of ligand field correction in conven-
tional theory of transition metal impurities.16 This section
discusses the calculation of the two last terms within the
Green function formalism.

The resolvent operator 
G�z� and the corresponding den-
sity variation 
�r� is calculated both for the host block
�
G�z� ,
�r�� and for impurity block �
Gii�z� ,
i�r�� of
the secular matrix �Eq. �A1��. When calculating the contour
integrals resulting in Eq. �A6� we use semicircular contour
from the bottom of the valence band �b to the Fermi energy
�F. The charge-dependent difference potential 
V�r� is not
necessarily spherically symmetric. We define the substitution
impurity potential as the difference


V��r�� = Veff��r�� − Vh
0�h

0�r�� �A4�

between the true self-consistent effective potential Veff��r��
and the effective self-consistent potential Vh

0�h
0�r�� of the

host crystal, both taken in the LDA approximation. Here �r�
and h

0�r� are the respective electron densities.
The impurity correction to the host Green function of the

crystal induced by the potential �Eq. �11��


G�z� = G�z� − Gh
0�z�

is found from the corresponding Dyson equation42


G�z� = ��I − G̃h
0�z� · 
V · �L−1�†�−1 − I�G̃h

0�z� .

Here

�
V��� = 	
�emb

��
� �r�
V��r�����r�dr

and I is a unit matrix.
The density variation is calculated using the equation


�r� = Im�
�=1

ND

�
�=1

ND


˜

�����r���
��r� , �A5�

where
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˜

�� = ��L−1�†
L−1���

and


 = −
1

	
	

�b

�F


G�z�dz . �A6�

The lower integration limit �b is chosen to include all the
relevant band and impurity states, �F is the Fermi energy. To
compute integral �A6�, we introduce the contour C in the
complex plane z enclosing all the poles of the Green function
up to the Fermi energy in the charge density integration.

With 
�r� calculated by means of Eqs. �A5� and �A6�
we find anew the charge-dependent impurity potential


V�r� = �
LM


VLM�r�YLM�r̂� �A7�

in the “embedded cavity,” which is not spherically symmet-
ric. The density variation can be similarly represented as


�r� = �
LM


LM�r�YLM�r̂� , �A8�

where one readily obtains


L�M��r� = �
pp�

�
LL�


˜

pL,p�L��pp��L,L�;r� �
M=−L

L

GL�M�L�M�
L,M�+M�

�A9�

with

�pp��L,L�;r� = �aL��pL�aL���p�L�RL��L,r�RL���L,r� + aL��pL�bL���pL�RL��L,r�ṘL���L,r�+

aL���pL�bL��pL�ṘL��L,r�RL���L�,r� + bL��pL�bL���p�L��ṘL��L,r�ṘL���L,r� , for 0 � r � rD

jL��pLr�jL���p�L�r� for rD � r � remb

�
and

GLML�M�
L�M+M� = 	

S

dSYL�M�
� ��,��YLM��,��YL�M�

� ��,��

�A10�

being the Gaunt coefficients.
Next we separate the impurity and host parts in the den-

sity correction


˜

L�M��r� = 
L�M��r� + 
L�M�
�s� �r� ,

where


L�M��r� = �
�=1

ND


���pp�L,L;r�GLML�M�
LM

+ 2�
�=2

ND

�
��=1

�−1

Re�
����pp��L,L�;r�GLML�M�
L�M�

is the host contribution, and


L�M�
�s� �r� = Rpl

2 �r� �
m=−l

l


lm,lmGlmL�M�
lm+M�

is the substitution impurity contribution. The functions Rpl�r�
are the radial parts of the impurity-centered local orbitals
�Eq. �A2��

Using this density correction, we calculate the impurity-
related self-energy 
Vii

LDA


Vii
LDA = �

L�M�

Glm−M�L�M�
lm 	

0

remb

drr2
VL�M��r�Rpl
2 �r�

�A11�

and substitute it into the Green function �Eq. �9��.
Self-energy correction Mi in Eq. �2� contains the matrix

elements �Eq. �14��. After substituting the potential �Eq.
�A4�� in the integral �Eq. �14�� and matching the boundary
conditions in accordance with the procedure described
above, the hybridization matrix element acquires form �15�.
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